

King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa www.sciencedirect.com

SPECIAL ISSUE: ENVIRONMENTAL CHEMISTRY

Photocatalytic decomposition of dyes using ZnO doped SnO₂ nanoparticles prepared by solvothermal method

Mohamed M. Rashad ^a, Adel A. Ismail ^{a,*}, I. Osama ^a, I.A. Ibrahim ^a, Abdel-Hakim T. Kandil ^b

Received 4 July 2013; accepted 16 August 2013 Available online 25 August 2013

KEYWORDS

ZnO; Doping; Stannic oxide; Solvothermal method; Photocatalysis

Abstract ZnO doped SnO₂ has been successfully synthesized by the solvothermal method using methanol as organic solvent. The effect of ZnO/SnO₂ molar ratios on the crystal structure, microstructure, optical and photocatalytic properties has been investigated. The synthesized samples are characterized by X-ray diffraction, transmission electron microscopy, N₂ physical adsorption, FT-IR spectroscopy and UV-Vis spectroscopy. XRD results revealed that all diffraction peaks positions agree well with the reflection of a tetragonal rutile structure of SnO₂ phase without extra peaks at 0.1ZnO:0.9SnO₂ and 0.2ZnO:0.8SnO₂ molar ratios. However, the secondary phase of ZnO at 0.3ZnO:0.7SnO₂ molar ratio was investigated. TEM images revealed that the shape of SnO₂ particles was spherical and the particle sizes of SnO₂ and 0.3ZnO:0.7SnO₂ molar ratio were 6.2 and 16.4 nm, respectively. The newly prepared samples have been tested by the determination of photocatalytic degradation of methylene blue (MB). The results indicated that Zn²⁺ doping at 0.3ZnO:0.7 SnO₂ molar ratio showed the highest photocatalytic activity for the MB photodegradation. The heightened photocatalytic activity of ZnO/SnO2 could be ascribed to the enhanced charge separation derived from the coupling of ZnO with SnO₂ due to the potential energy differences between SnO₂ and ZnO. The recycling tests demonstrated that 0.3ZnO:0.7 SnO₂ photocatalysts were quite stable during that liquid-solid heterogeneous photocatalysis since no decrease in activity in the first four cycles was observed.

© 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

^{*} Corresponding author. Tel./fax: +20 2 25010643. E-mail address: aismail@cmrdi.sci.eg (A.A. Ismail). Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1. Introduction

There has been extensive interest in developing semiconductor photocatalysts with high activities for environmental applications such as air purification, water disinfection, hazardous waste remediation, and water purification (Hoffmann et al., 1995; Fujishima et al., 2000; Kormann et al., 1991; Zhang et al., 2005; Ismail, 2008; Kostedt et al., 2008). The

^a Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Egypt

^b Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt

72 M.M. Rashad et al.

photochemistry of semiconductor nanoparticles and nanoparticulate materials is a fast growing area, both in terms of research and commercial activity (Brokken-Zijp et al., 2011; Mills and Lee, 2002). A photocatalytic process is based on the generation of electron-hole pairs by means of band-gap radiation that can give rise to redox reactions with the species adsorbed on the surface of the photocatalysts (Wang et al., 2005; Yuan and Xu, 2010). However, the high degree of recombination of photogenerated electrons and holes in semiconductors decreased greatly their photocatalytic efficiency and impeded the practical application of the photocatalytic technique in the degradation of contaminants in water and air. Thus, a major challenge in photocatalysis is the need to increase the charge separation efficiency of the photocatalyst and its photocatalytic efficiency. Fortunately, the doping semiconductor particles with difference in band-gap energy could increase the charge separation and extend the energy range of photoexcitation, so doping semiconductor photocatalysts exhibited higher photocatalytic activity for both gas- and liquid-phase reactions than single semiconductor photocatalysts (Pal et al., 2001: Yu et al., 1998: Ismail and Bouzid, 2013: Mahamoud et al., 2012; Lin and Chiang, 2012). ZnO, TiO₂ and SnO₂ have been recognized to be preferable materials for photocatalytic processes due to their high photo-sensitivity, low cost and chemical stability. However, the band gap energy of TiO₂ (3.2 eV), ZnO (3.3 eV) and SnO₂ (3.6 eV) limits the absorption ability of the high-energy portion (UV) of the sunlight, which results in relatively small efficiency (Fouad et al., 2006; Ismail et al., 2010; Vinodgopal et al., 1996). SnO₂ is particularly interesting because it has outstanding optical, electrical and mechanical properties, is a versatile material and is widely used as the most attractive material for gas sensor applications, as a catalyst during the oxidation of organic compounds, as a key component in rechargeable Li batteries, and as a master element in opto-electronic devices (Borges et al., 2010; Zheng et al., 2007). A number of preparations of SnO₂ nanoparticles by methods such as co-precipitation (Rumyantseva et al., 2005), sol-gel method (Broussous et al., 2002; Gu et al., 2003; Kotsikau et al., 2004), solvothermal (Sathyaseelan et al., 2010), chemical vapor deposition (Suh et al., 1999; Huh et al., 1999), VLS method (He et al., 2006), laser ablation(Monredon et al., 2002) and hydrothermal method (Firooz et al., 2008) have been developed. Among these methods, solvothermal method is well suited for the production of nanostructure materials, because of its relatively low processing cost, being much milder and the ability to control the grain size (Anandan and Rajendran, 2010). In this study, ZnO doped SnO₂ at different molar ratios has been successfully synthesized by the solvothermal method using methanol as organic solvent. The newly prepared samples have been tested by the determination of photocatalytic degradation of MB. The latter compound was used because it exhibits a high molar absorptivity (or molar extinction coefficient) allowing the rate of bleaching to be readily evaluated.

2. Experimental section

2.1. Chemicals and materials

Chemically grade SnCl₄·5H₂O, Zn(CH₃COO)₂ and methanol were purchased from Sigma–Aldrich and used as the starting

materials for SnO₂ and ZnO, whereas NaOH was purchased from Fluka.

2.2. Procedure

2.2.1. Preparation of ZnO/SnO₂ nanoparticles

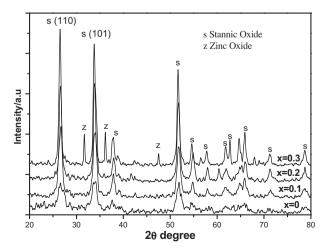
A stoichiometric amount of SnCl₄·5H₂O and Zn(CH₃COO)₂ was dissolved in 300 ml methanol. 5 M sodium hydroxide solution was obtained by dissolving it in methanol then added to the above solution. It was employed as a base to attain the pH = 7 for complete precipitation of Zn. The resulting solutions were poured into a stainless Telfon-lined 100 ml capacity autoclave. The autoclave was sealed and heated to maintain at 150 °C for 6 h, and then air-cooled to room temperature. The precipitates were repeatedly washed with deionized water and absolute methanol then dried at 80 °C for 24 h. The formed powder was annealed at 800 °C for 30 min to get crystalline powders using a tube furnace in static atmosphere.

2.3. Physical characterization

The crystallite phases of different annealed samples identified by X-ray diffraction (XRD) using a Brucker axis D8 diffractometer with crystallographic data software Topas 2 using Cu-Kα radiation. The crystallite size of undoped and doped stannic oxide nanoparticles was quantitatively determined based on Scherrer's formula, further most intense peak of the SnO₂ phase. The particles morphology was observed using Transmission electron microscopy (TEM) recorded with a JEOL-JEM-1230 microscope. The UV-Vis absorption spectrum was recorded by a UV-Vis-NIR scanning spectrophotometer (Jasco-V-570 Spectrophotometer, Japan) using a 1 cm path length quartz cell. UV-Vis spectra were detected in the diffuse reflectance mode (R) and transformed to the Kubelka-Munk function F(R) to separate the extent of light absorption from scattering. Furthermore the band gap values were obtained from the plot of the modified Kubelka-Munk function $(F(R) E)^2$ versus the energy of the absorbed light E (Tauc et al., 1966; Ismail et al., 2012). The band gap energy was determined from the intersection of tangent through the point of inflection in the absorption band and the photon energy axis. Fourier transforms infrared spectrometer (FT-IR; JASCO, Model 6300) spectrum was recorded in KBr dispersion in the range of 400–4000 cm⁻¹.

2.4. Photocatalytic activity tests

The photocatalytic tests were performed in an aqueous solution using MB ($C_{16}H_{18}ClN_3S$) (Aldrich, $\lambda_{max}=664$ nm) as the probe molecule. A quartz photoreactor was filled with 250 cm³ aqueous solution of MB at a concentration of 10^{-5} M (3.198 ppm) and mixed with 0.1 g of newly prepared photocatalysts. UV irradiation was performed by a 150 W medium pressure xenon lamp (Osram) immersed in a quartz jacket and equipped with a cooling tube. This lamp provides a relatively continuous light output from 250 to 700 nm, with a number of sharp lines occurring near 450 nm and above 800 nm. The lamp was switched on 30 min prior to the start of the reaction to stabilize the power of its emission and the reactor was cooled by circulation of H_2O . The temperature of the cooling water was stabilized to perform the reactions


at 25 °C. The concentration of the substrate after equilibration was measured and taken as the initial concentration (C_0) to discount the adsorption in the dark. MB samples were withdrawn at regular intervals (C) from the upper part of the reactor with the catalyst being removed from the liquid phase by filtration through nylon syringe filters (pore size: 0.45 µm). The photodegradation rate was determined by measuring the MB remaining in the aqueous solution through 3 h of illumination. Measurements were carried out using JASCO V-570 UV–Vis spectrophotometer.

3. Results and discussion

3.1. Structural studies

Fig. 1 represents the XRD patterns of undoped SnO₂ and 0.1ZnO:0.9SnO₂, 0.2ZnO:0.8SnO₂ and 0.3ZnO:0.7SnO₂ molar ratios. It is clear that peak positions agree well with the reflection of tetragonal rutile structure of the SnO₂ phase (JCPDS#72-1147). Furthermore, there are no extra peaks of ZnO at 0.1ZnO:0.9SnO₂ and 0.2ZnO:0.8SnO₂ molar ratios where the diffraction peaks arise at (110), (101), (200), (111), (211), (220) and (002) without any other phases detected indicating that Zn ions were embedded into the crystal lattice of SnO₂. Also, the results indicate that Zn ions get substituted at the Sn site without changing the cassiterite structure. However, secondary phase of hexagonal ZnO was detected at 0.3ZnO:0.7SnO₂ molar ratio (Ismail et al., 2005) (JCPDS#79-2205). It is observed that the peak position shifts to higher 2θ as the ZnO molar ratio increases. Table 1 summarize the variation of the crystallite size and the change in lattice parameters calculated from the (110) and (101) peaks of undoped SnO₂ and Zn doped SnO₂. The results indicated that the lattice parameters, unit cell volume and the crystallite size were decreased with increasing Zn substitution ratio (Table 1).

Fig. 2 shows the TEM images of undoped SnO₂ (Fig. 2a) and 0.3ZnO:0.7SnO₂ (Fig. 2b) molar ratio. It revealed that the shape of SnO₂ particles were spherical and agglomerated (Fig. 2a). Zn substituted SnO₂ had reduced the agglomeration degree of the undoped sample and the shape of Zn substituted SnO₂ particles was nearly spherical and cubical indicating the

Figure 1 XRD patterns of undoped SnO_2 and $0.1ZnO:0.9SnO_2$, $0.2ZnO:0.8SnO_2$ and $0.3ZnO:0.7SnO_2$ molar ratios.

presence of a second phase (Fig. 2b). These micrographs show that the particle sizes of SnO_2 and $0.3ZnO:0.7SnO_2$ molar ratio samples were 6.2 and 16.4 nm, respectively which was in agreement with the crystallite size calculated XRD analysis as you see in Table 1.

Fig. 3 showed FTIR spectra of undoped SnO₂ and 0.3ZnO:0.7SnO₂ molar ratio samples within 400–4000 cm⁻¹. The results revealed that the peak at 3438 cm⁻¹ comes from the stretching mode vibrations of OH, while the peak at 1636 cm⁻¹ is attributed to the bending vibrations of adsorbed H₂O molecules. The small peak at 1364 cm⁻¹ is due to the bending vibrations of C–H in the methyl which maybe comes from the residues of preparation processes. It indicates that there may be a very small amount of organic residues in the SnO₂ and ZnO nanoparticles. Also, the strong peak at 615 cm⁻¹ can be ascribed to the vibration of Sn–O bond in SnO₂ as shown in the literature (Dutta and De, 2007; Zhong and Liu, 1999; Monredon et al., 2002).

UV-Vis spectroscopy was performed on all samples (undoped SnO₂ and 0.1ZnO:0.9SnO₂, 0.2ZnO:0.8SnO₂ and 0.3ZnO:0.7SnO₂ molar ratios) to observe the change in optical properties of the formed SnO₂ as a function of Zn substitution. The transmittance edge of ZnO/SnO₂ samples varies as the content of Zn ions in SnO₂ nanoparticles varies. They show a slight red shift in the band transition from the normal value with adding the ZnO dopant at 0.3ZnO:0.7SnO₂ molar ratio (Fig. 4). The optical band gap is calculated from plotting $(\alpha hv)^n$ versus hv and a direct transition is found for undoped and substituted SnO₂ nanoparticles. The data are summarized in Table 1. The calculated band gap of undoped SnO2 nanoparticles was found to be 3.75 eV, which is higher than the reported value of the bulk SnO₂ i.e. 3.6 eV (Sharma et al., 2011; Fang et al., 2008). The band gaps of 0.1ZnO:0.9SnO₂, 0.2ZnO:0.8SnO2 and 0.3ZnO:0.7SnO2 photocatalysts estimated from the tangent lines are 3.61, 3.56, and 3.33 eV, respectively. These values are all in the range of experimental error (± 0.1 eV) (Table 1). The appearance of such larger band gap energy is expected in SnO₂ nanoparticles because of their small size \sim 6 nm.

3.2. Photocatalytic properties

When the ZnO/SnO₂ catalyst is radiated by UV light with photon energy higher or equal to the band gaps of SnO2 and ZnO, electrons (e⁻) in the VB can be excited to the CB with simultaneous generation of the same amount of holes (h⁺) in the VB. The photogenerated electrons and holes are separated under the influence of the electrostatic field induced by different work functions. Thus, electrons move to the SnO2 side and holes to the ZnO side. The photogenerated electrons and holes in the ZnO/SnO₂ heterojunction nanocatalyst could inject into a reaction medium and participate in chemical reactions (Zheng et al., 2009). The hole in the valence band can react with H₂O or hydroxide ions adsorbed at the particle surface to produce hydroxyl radicals (OH.), while the electron in the conduction band can reduce O_2 to produce superoxide radicals $(O_2 \cdot \overline{})$ and subsequently other reactive oxygen species (i.e., H₂O₂ and OH_•). Both, holes and OH. are extremely reactive toward organic compounds (Hoffmann et al., 1995; Ismail and Bahnemann, 2011). The time-dependent UV-Vis spectra of MB during the irradiation under UV light with different catalytic materials 74 M.M. Rashad et al.

Table 1	Variation of crystal size, lattice parameters, cell volume and band gap energy of undoped SnO2 and ZnO:SnO2 at different
molar ra	tios

Sample	Cs (nm)	$a = b (\mathring{A})$	c (Å)	Cell volume	BG (eV)
SnO_2	5.5	4.75	3.19	71.565	3.75
0.1ZnO: 0.9 SnO ₂	13.7	4.73	3.18	71.154	3.61
0.2 ZnO: 0.8 SnO $_2$	13.9	4.74	3.18	71.394	3.56
0.3ZnO:0.7SnO ₂	18.7	4.74	3.19	71.115	3.33

Cs, crystallite size, BG, bandgap energy.

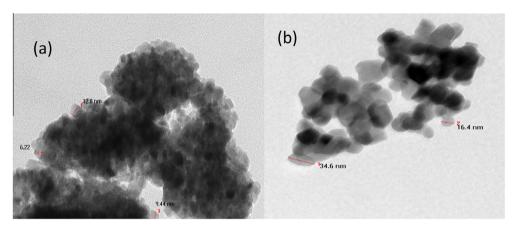
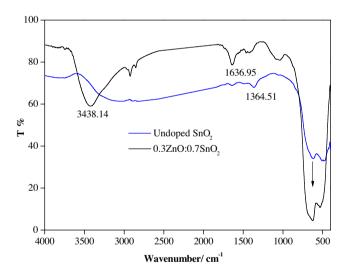
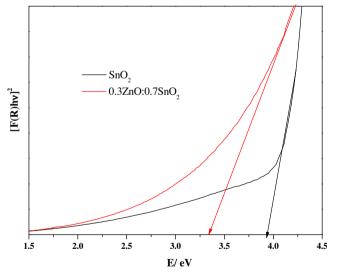
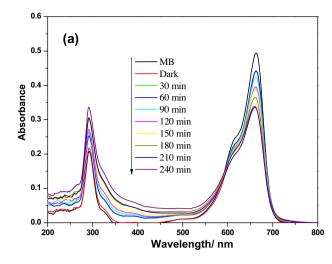


Figure 2 TEM images of (a) undoped SnO₂ and (b) 0.3ZnO:0.7SnO₂ molar ratio.


Figure 3 $\,$ FTIR spectra for undoped SnO $_2$ and 0.3ZnO:0.7SnO $_2$ molar ratio.

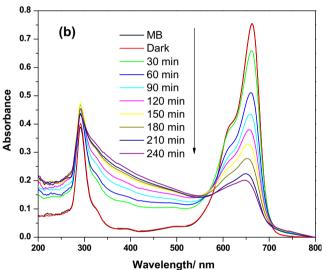
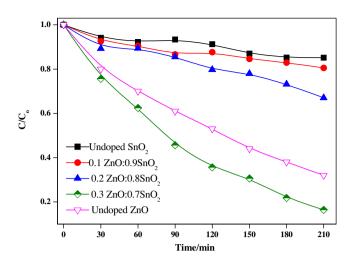
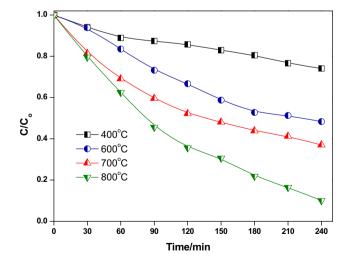
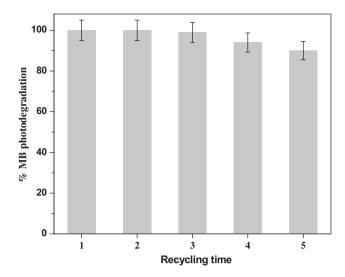

are shown in Fig. 5. It can be observed that the maximum absorbance of 664 nm decreases gradually according to the photocatalysts after 240 min. The photocatalytic degradation of MB was carried out using the newly prepared photocatalysts, undoped SnO₂ and 0.3ZnO:0.7SnO₂ molar ratio (Fig. 5a and b). It is clearly seen that, the strong absorption bands of MB those that are located at $\lambda=290$ nm and $\lambda=664$ nm steadily decrease upon increasing irradiation times. The photocatalytic activity improved significantly in the presence of Zn²⁺ doping showing the highest photocatalytic activity for the MB decoloration

Figure 4 Plot of transferred Kubelka–Munk versus energy of the light absorbed of the undoped SnO_2 and $0.3ZnO:0.7SnO_2$ molar ratio.


where the absorbance at $\lambda_{max} = 664$ nm decreased from 0.75 to 0.15 after nearly 240 min of irradiation using 0.3ZnO:0.7S-nO₂ sample (Fig. 5b). The enhancement in the photocatalytic activity may come from the hetero-junctions of the ZnO/SnO₂ photocatalyst, its surface area and its dispersion in solution. The photocatalytic activities of the undoped either SnO₂ or ZnO and ZnO/SnO₂ samples at different molar ratios for the degradations of MB were illustrated in Fig. 6. The photocata-


Figure 5 The absorbance spectra changes of MB solution in undoped SnO₂ (a) and 0.3ZnO:0.7SnO₂ molar ratio (b).

lytic activities of the Zn doped SnO₂ photocatalysts change with the Zn contents, photocatalysts with 0.1ZnO:0.9SnO₂, 0.2ZnO:0.8SnO₂ and 0.3ZnO:0.7SnO₂ molar ratios show higher photocatalytic activities than undoped SnO₂ (Fig. 6). Also, the decrease of SnO₂ content led to increase in the photocatalytic activity of the doped photocatalyst because of the very low photocatalytic activity of SnO₂. On the other hand, the photoactivity of undoped ZnO photocatalysts is higher than undoped SnO₂, however, photocatalyst with 0.3ZnO:0.7SnO₂ molar ratio is much better than either undoped SnO2 or ZnO. This may be due to the formation of hetero-junctions between ZnO, SnO₂ and Zn₂SnO₄ (Lin and Chiang, 2012; Sathyaseelan et al., 2010; Firooz et al., 2008; Tennakone and Bandara, 2001). The heightened photocatalytic activity of ZnO/SnO₂ could be further ascribed to the enhanced charge separation derived from the coupling of ZnO with SnO₂ due to the potential energy differences between SnO2 and ZnO, which would promote interfacial charge-transfer relative to that of charge carrier recombination (Dodd et al., 2006; Zheng et al., 2009) thus enhancing the photocatalytic activity. The order of photocatalytic activity of Zn doped SnO₂ at 210 min was as follows:


Figure 6 Photocatalytic decolorization kinetics of MB using either undoped SnO_2 or ZnO, $0.1ZnO:0.9SnO_2$, $0.2ZnO:0.8SnO_2$ and $0.3ZnO:0.7SnO_2$ molar ratios. (MB concentration [10^{-5} M], volume 250 ml.)

 $0.3 \text{ZnO:} 0.7 \text{SnO}_2 > \text{ZnO:} 0.8 \text{SnO}_2 > 0.1 \text{ZnO:} 0.9 \text{SnO}_2$, which suggested that the Zn^{2^+} doping enhanced the photocatalytic activity of SnO_2 . The $0.3 \text{ZnO:} 0.7 \text{SnO}_2$ photocatalyst exhibited the highest photocatalytic efficiency with the MB concentration reduced as much as 100% in 240 min. Fig. 7 shows that the degradation kinetics of MB over the $0.3 \text{ZnO:} 0.7 \text{SnO}_2$ photocatalysts annealed at 400, 600, 700 and 800 °C. It shows that the photocatalytic activity of the $0.3 \text{ZnO:} 0.7 \text{SnO}_2$ photocatalyst increased when the annealed temperature was increased from 400 to 800 °C. To explore the advantage of $0.3 \text{ZnO:} 0.7 \text{SnO}_2$ molar ratio and its applicability, reuse cycles of new photocatalysts were tested for photodegradation of MB (Fig. 8). The recycling tests demonstrated that a photocatalyst with $0.3 \text{ZnO:} 0.7 \text{SnO}_2$ molar ratio was quite stable during that liquid–solid

Figure 7 Photocatalytic decolorization kinetics of MB using 0.3ZnO:0.7SnO $_2$ molar ratio photocatalysts annealed at different temperatures 400, 600, 700 and 800 °C. (MB concentration $[10^{-5}$ M], volume 250 ml.)

76 M.M. Rashad et al.

Figure 8 Repeated cycles up to 5 times of photodegradation of MB over 0.3ZnO:0.7SnO₂ molar ratio photocatalysts under UV lights. (MB concentration [10^{-5} M], volume 250 ml.)

heterogeneous photocatalysis since no decrease in activity in the first three cycles was observed. However, the photocatalytic activity was decreased to 90% after five cycles. In general, ZnO/SnO₂ nanocomposites are stable and can be recycled with a slight loss of their photochemical activity.

4. Conclusion

ZnO doped SnO₂ have been successfully synthesized by the solvothermal method using methanol as organic solvent. The lattice parameter, crystallite size, and unit cell volume were increased with increasing of the Zn substitution molar ratios. However, the band gap was decreased with increasing of the Zn substitution. The highest band energy was 3.75 eV for undoped SnO₂ whereas the lowest band energy was 3.33 eV at 0.3ZnO:0.7SnO₂ molar ratio. The results indicated that Zn²⁺ doping at 0.3ZnO:0.7SnO₂ molar ratio showed the highest photocatalytic activity for the MB photodegradation. The recycling tests demonstrated that a 0.3ZnO:0.7SnO₂ molar ratio was quite stable during liquid–solid heterogeneous photocatalysis since no decrease in activity in the first three cycles was observed.

References

- Anandan, K., Rajendran, V., 2010. Size controlled synthesis of SnO₂ nanoparticles: facile solvothermal process. J. Non-Oxide Glasses 2, 83–89
- Borges, P.D., Scolfaro, L.M.R., Alves, W.L., Dasilvajr, E.F., 2010. DFT study of the electronic, vibrational, and optical properties of SnO₂. Theor. Chem. Acc. 126, 39–44.
- Brokken-Zijp, J.C.M., Van Asselen, O.L.J., Kleinjan, W.E., Van de Belt, R., 2011. Photocatalytic properties of tin oxide and antimonydoped tin oxide nanoparticles. J. Nanotechnol. 2011, 15.
- Broussous, L., Santilli, C.V., Pulcinelli, S.H., Craievich, A.F., 2002. SAXS study of formation and growth of tin oxide nanoparticles in the presence of complexing ligands. J. Phys. Chem. B 106, 2855–2860.
- Dodd, A., McKinley, A., Saunders, M., Tsuzuki, T., 2006. Mechanochemical synthesis of nanocrystalline SnO₂–ZnO photocatalysts. Nanotechnology 17, 692–698.

Dutta, K., De, S.K., 2007. Optical and nonlinear electrical properties of SnO₂—polyaniline nanocomposites. Mater. Lett. 61, 4967–4971.

- Fang, L.M., Zu, X.T., Li, Z.J., Zhu, S., Liu, C.M., Wang, L.M., Gao, F., 2008. Microstructure and luminescence properties of Co-doped SnO₂ nanoparticles synthesized by hydrothermal method. J. Mater. Sci. Mater. Electron. 19, 868–874.
- Firooz, A.A., Mahjoub, A.R., Khodadadi, A.A., 2008. Preparation of SnO₂ nanoparticles and nanorods by using a hydrothermal method at low temperature. Mater. Lett. 62, 1789–1792.
- Fouad, O.A., Ismail, A.A., Zaki, Z.I., Mohamed, R.M., 2006. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Appl. Catal. B 62, 144.
- Fujishima, A., Rao, T.N., Tryk, D.A., 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1.
- Gu, F., Wang, S.F., Lu, M.K., Qi, Y.X., Zhou, G.J., Xu, D., Yuan, D.R., 2003. Luminescent properties of Mn²⁺-doped SnO₂ nanoparticles. Inorg. Chem. Commun. 6, 882–885.
- He, J.H., Wu, T.H., Hsin, C.L., Li, K.M., Chen, L.J., Chueh, Y.L., Chou, L.J., Wang, Z.L., 2006. Beaklike SnO₂ nanorods with strong photoluminescent and field-emission properties. Small 2, 116–120.
- Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., 1995.Environmental application of semiconductor photocatalysis.Chem. Rev. 95, 69.
- Huh, M., Kim, S., Ahn, J., Park, J., Kim, B., 1999. Oxidation of nanophase tin particles. Nanostruct. Mater. 11, 211–220.
- Ismail, A.A., 2008. Single-step synthesis of a highly active photocatalyst for oxidation of trichloroethylene. Appl. Catal. B 85, 33–39.
- Ismail, A.A., Bahnemann, D.W., 2011. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J. Mater. Chem. 21, 11686–11707.
- Ismail, A.A., Bouzid, H., 2013. Synthesis of mesoporous CeO₂/TiO₂ thin films for self-cleaning applications. J. Colloid Interface Sci. 404, 127–134.
- Ismail, A.A., El-Midany, A.A., Abel-Aal, E.A., El-Shall, H., 2005. Application of statistical design strategies to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater. Lett. 59, 1924–1928.
- Ismail, A.A., Bahnemann, D.W., Robben, L., Wark, M., 2010.Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chem. Mater. 22, 108–116.
- Ismail, A.A., Bahnemann, D.W., Al Sayari, S.A., 2012. Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO₂–TiO₂ nanocomposites. Appl. Catal. A 431–432, 62–68.
- Kormann, C., Bahnemann, D.W., Hoffmann, M.R., 1991. Photolysis of chloroform and other organic molecules in aqueous TiO₂ suspensions. Environ. Sci. Technol. 25, 494–500.
- Kostedt, W.L., Ismail, A.A., Mazyck, D.W., 2008. Impact of heat treatment and composition of ZnO–TiO₂ nanoparticles for photocatalytic oxidation of an azo dye. Ind. Eng. Chem. Res. 47, 1483– 1487
- Kotsikau, D., Ivanovskaya, M., Orlik, D., Falasconi, M., 2004. Gassensitive properties of thin and thick film sensors based on Fe₂O₃–SnO₂ nanocomposites. Sens. Actuators B 101, 199–206.
- Lin, C.-C., Chiang, Y.-J., 2012. Preparation of coupled ZnO/SnO₂ photocatalysts using a rotating packed bed. Chem. Eng. J. 181–182, 196–205.
- Mahamoud, M.H.H., Ismail, A.A., Sanad, M.S.S., 2012. Developing a cost-effective synthesis of iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem. Eng. J. 187, 96–103.
- Mills, A., Lee, S.K., 2002. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. 152, 233–247.
- Monredon, S., Cellot, A., Ribot, F., Sanchez, C., Armelao, L., Gueneau, L., Delattre, L., 2002. Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem. 12, 2396– 2400.

- Pal, B., Hata, T., Goto, K., Nogami, G., 2001. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts. J. Mol. Catal. A 169, 147.
- Rumyantseva, M.N., Kovalenko, V.V., Gaskov, A.M., Pagnier, T., Machon, D., Arbiol, J., Morante, J.R., 2005. Nanocomposites SnO₂/Fe₂O₃: wet chemical synthesis and nanostructure characterization. Sens. Actuators B 109, 64–74.
- Sathyaseelan, B., Senthilnathan, K., Alagesan, T., Jayavel, R., Sivakumar, K., 2010. A study on structural and optical properties of Mn- and co-doped $\rm SnO_2$ nanocrystallites. Mater. Chem. Phys. 124, 1046–1050.
- Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R., 2011.

 Magnetic properties of Fe and Ni doped SnO₂ nanoparticles.

 Nanomater. Nanotechnol. 1, 29–33.
- Suh, S., Zhang, Z., Chu, W., Hoffman, D.M., 1999. Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films. Thin Solid Films 345, 240–243.
- Tauc, J., Grigorovici, R., Vanuc, A., 1966. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 15627
- Tennakone, K., Bandara, J., 2001. Photocatalytic activity of dyesensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl. Catal. A 208, 335.
- Vinodgopal, K., Bedja, I., Kamat, P.V., 1996. Nanostructured semiconductor films for photocatalysis photoelectron-chemical

- behavior of SnO₂/TiO₂ composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180.
- Wang, C., Xu, B.Q., Wang, X., Zhao, J., 2005. Preparation and photocatalytic activity of ZnO/TiO₂/SnO₂ mixture. J. Solid State Chem. 178, 3500–3506.
- Yu, J.C., Lin, J., Kwok, R.M., 1998. Ti_{1-x}Zr_xO₂ solid solutions for the photocatalytic degradation of acetone in air. J. Phys. Chem. B 102, 5094.
- Yuan, H., Xu, J., 2010. Preparation, characterization and photocatalytic activity of nanometer SnO₂. Int. J. Chem. Eng. Appl. 1, 3.
- Zhang, M., Sheng, G., Fu, J., An, T., Wang, X., Hu, X., 2005. Novel preparation of nanosized ZnO-SnO₂ with high photocatalytic activity by homogeneous co-precipitation method. Mater. Lett. 59, 364–3644.
- Zheng, Y., Wang, C., Mao, Z., Wang, N., 2007. Preparation of nanometer-sized SnO₂ by the fusion method. Mater. Lett. 61, 1205–1209.
- Zheng, L., Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K., Zhu, J., 2009. Network structured SnO₂/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg. Chem. 48, 1819–1825.
- Zhong, G., Liu, M., 1999. Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. J. Mater. Sci. 34, 3213–3219.